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{ Z~~S~} are equivalent if and only if there is a certain homomorphism between
the matrix rings generated by Q(t), t c [O ,c~I~ and Y( t) , t c [O ,co] . The
equivalence is identical to weak luinpability in the case where ~Z ,S }  is a

renewal process. 
- 

- ,~~~~~~ -

Although the conditions for strong lumpability can be written in an attractive

form , they are too restrictive to be of any real interest. Weak lumpability

is of more interest since (as will be shown) it occurs in less trivial examples ,

but the necessary cond itions arc very compl icated. The equivalence def ined

herein has the advantage of having simple necessary and sufficient conditions.
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Abst ract

We define a form of equivalence between Markov—renewal processes that

includes strong and weak lumpability as special cases, and examine its properties .

If {X ,T }  is a Markov—renewal process with kernel Q(t) and {Z ,s }  is a

Markov—renewal process with kernel Y(t), then it is shown that {Xn~
T } and

{Zn~
Snl are equivalent if and only if there is a certain homomorphism between

the matrix rings generated by Q(t), t c [0,°’] and Y(t), t C [O,°’]. The

equivalence is identical to weak lumpability in the case where {Z ,S~} is a

renewal process.

Although the conditions for strong lumpability can be written in an

attractive form, they are too restrictive to be of any real interest. Weak

lumpability is of more interest since (as will be shown) it occurs in less

trivial examples, but the necessary conditions are very complicated. The

equivalence defined herein has the advantage of having simple necessary and

sufficient conditions.



CHAPTER 1

• 1. Introduction. A random process (X ,T) n=l ,2,3,~~
.. with X~ taking values

in a finite or countable set S (called the state space), and T taking values

in [O ,o’] is called a Markov renewal process (MRP) if

P(X +1=j, T +i ~ tIx 0,x1, “,X ,T1,T2,•~~•,T ) = P(X
÷1 =j, T +i

< t!X )

for all n C Z~ , j C S, t C [O ,m]. Markov renewal processes arise

naturally in queueing systems and since renewal processes and Markov chains

are special cases of MRP’s, a large class of problems in the study of random

processes can be handled with Markov renewal theory.

Consider the departures from an M/G/l/N queue. Let T~ be the time between

the (~~_ 1)5t and nth departure, and let Xn be the number of customers in line

the instant after the nth departure. It is well known [3 ] that (X
nsTn) is a

MRP on a state space consisting of the nonnegative integers. Now consider the

special case where G M .  Since the M/M/l/°° queue is an M/G/l/N queue, the

departure process is a NRP with a countable state space. By [1] and [3],

though, we know that in steady state the departure process from an HIM/ i

queue is a Poisson process, which like any renewal process, is a one state MR.?.

Thus, in some sense, the infinite state MR.? that represents the output from an

HIM/i queue is equivalent to a Poisson process. An enormous amount of work has

been done on systems with HIM/i queues that never would have been possible

were it not known that the output from an H/M/i queue is a Poisson process. Any

time it can be shown that a MR.? is “equivalent” to a renewal process, the amount

of computation necessary to make statements about the process will be drastically

reduced . This paper is a first step towards getting such results. 
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When two random processes are called equivalent in this paper ,

means that certain specific conditions (to be given later) are satisfied

by the two processes. The conditions are strong enough to be of interest,

and weak enough to assure that there are plenty of examples.

2. Lumpability. Probably the simplest case of equivalence between MRP’s is

lumpability in Markov chains [ 8]. Let ~X~} be a Markov chain on a finite or

countable state space S. Let A1,A2, . 
~,A be a partition of S, and let

F : S -e IA 1,A2, • .  
~,A }  be the map that “lumps” the state space S onto the

partition {A1,A,, “,A~}. The process {F(X~)) may or may not be a Markov

chain. In general, the probability of going from A1 to A~ in {F(X~)~ ~.Till

depend on precisely which element of A.~ the {x~) process is in. If for each

1 and j ,  though, the probability of going from A1 to A~ is independent of the

State in A1 that the {X~) process is in, then the process {F(X )) is a Markov

chain. When this happens we say ~X~} is strongly lumpabie to {F(X~)}. This is

a special case of the equivalence to be defined .

For example, say S = {i.,2,3} and let {X~} have transition probability

matrix

1 3

1~~f
1 1 3

\~ 
8 8

Let F(l)=A1,F(2) =F(3) =A 2. The process {F(Xn)) is a Markov chain on {A1,A.,
}

with transition probability matrix

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.- .

~~~~~ - -
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If is strongly lumpable to 1F(X~)} then no matter which state in S

the process starts in, {F(X )} will be a Markov chain. In fact, even if the

precise state that the process begins in is not known, the ensuing {F(X~)}

process is a Markov chain.

Sometimes, even though {X} is not strongly lumpable to {F(X )}, the process

f F(X~)} is a Markov chain when ~
Xn} is in steady state. When this happens we

say {X~} is weakly lumpable to {F(Xn
))
~

If S is a finite set with in elements and F(S) has n elements A1,A2,

(n < in), then the following m x n  matrix, U, can be constructed . Let

= 
(O ,ifi~~~A .,

• -13 ~( 1,if I c A .
3

If {X} has a steady state then there is a vector U that satisfies UP Ti

where P is the transition probability matrix for ~~~~ Let ii be an n X

matrix with

O,if j ~ A11 .. = 
I

13
:1 ,i f j C A I

L 
~kk eA.

1

The 1th row of 11 is the conditional probability of being in state j given that

the process is in steady state and that the process is in Ai. 

~~~~----. -~~~~~~- 
-. .. 
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Kemeny and Snell [8 1, show that {X }is strongly luinpable to {F(X )} if

and only if PU = U(flP~), and that if {F(X )~ is a Markov chain then its

transition probability matrix is TIP~ . They also show that IT? = (LIPU)~J or

PU = IJ (flPU) is a sufficient condition for ~X )  to be weakly lumpable to {F(x)}.
For example let S = {l,2,3} and set F(1) = A1, F( 2 ) = F(3) = A2. Suppose the

transition probability matrix for {X} is

/1 1. 1f 2  4

-
~~ 0

1 1 1In this case II = ( j
~ ~) so

f i  0 / 1
n~~~~ 1 1 1 I

0 1/2 1/2/ and 13 = ( 0 1

\ o i j .

~X~} is not strongly lumpable to {F(X~)} since P(F(X~) =A 1IF(X~_1) =A 2)

depends 0: whether X~~1 is equal to 2 or 3. This can be seen formally by noting

that PU ~ U(ITP U). In steady state, though , {F(X
n
)} is a Markov chain since

lIP (liP U)li . The resulting Markov chain ~F(X~)} has a transition probability

matrix -

/ 1/2 1/2
flP

~! 
= I- 

\ l/4 3/4

The necessary conditions for weak lumpability are much less appealing than

the necessary and sufficient condition for strong lumpability or the sufficient

conditions for weak lumpability. If y is a probability vector on S then define

~ 

. — . --~~~~- - .- ~~~~ .- -.-- .- —~~~~~~~ -- , - , .- . -  
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to be the vector of conditional probabilities of being in state j

(j = 1,2, . . .,m), given that the process is in A1. For example, the 1th row

of the matrix i~ is [~~~~~~~
. Let be the set of all finite sequences of states

in F(S) that end with A.. If A A.  ~~~~ A. A. and A. , A.  I .~~ A. , A.
3 i] 12 ‘k 3 31 32 3 q .~

are two elements of then for {Xn
} to be weakly lumpable to {F(X )~ it must

be true that for each a £(1,2, ~~~~~~

~ Pi~ Y~
1 

~ I ~~~ y~
2

i c S  ~~C A  i t S  ~ c Aa a

where

1 ii ~2 ~3 ~4 1k ~y = [ [[[[[IT) P1 P) P] . . .  P] P]

and

~2 ~~“ ~~~ ~
= [ ... [[[[[Ti] P] - P] ~ 

• . .  F) ~ P)I

Serfozo [10] showed that strong and weak lumpability can be defined for

MRP ’s in an analogous manner. In fact, the conditions for strong and weak

lumpability In }~P’s are virtually identical to the conditions for Markov chains.

If {X~CT~} is a MRP on a finite state space S = {l,2,3, . 1  •m~, with

kernel Q(t) (i.e. Q1~(t) 
= P(X41 j, T~~1 < tIXn = I)) and F: S {A1,A2, ..

is a partition of the state space then ~~~~~~ is said to be strongly lumpable

to ~F(X~ ), T } i f  {F(X n)~Tn }iS a MR.? .

• Again, let Ti be the steady state vector f or the embedded I4arkov chain

(i.e. IIQ(=) Ti), and let ij,t.y be defined as before. Serfozo shows that

{Xn~
T } is strongly lumpable to ~F(X~),T~} if and only if Q( t)t i U(TTQ(t)U)

for all t c [0,=]. Likewise if for all t, Q(t)U • TJ(nQ(t)U) or IIQ(t) (TIQ (t) U)i

then (F(X~),T~} is a MR.P in steady state (i.e. weakly lumpable). Unfortunately,

the necessary conditions for weak lumpability are again very complicated . 

~~~~~~.



—.-~ -~ . -
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ _ _ _

7

Let F~ be the set of all finite sequences of states in F(S) that end with A~.

If A. , A. ~~.. A. , A. and A . , A , • . ., A. , A. are two elements of ‘
. and

‘1 ‘2 ‘ ‘k 3 3 1 i2 J q 3 3

• ~t l, t2, “,t~ }, {s]. ~2 ’ • • t S
q~ are two sequences of positive real numbers

then for 
~
Xn~

Tn
} to be weakly lumpable to {F(Xn)~

Tn
} it must be true that for

each a c (1,2, • . .
,j~j) and t c [0,”],

I Q~~ 
(t) = Q~~ 

(t)
i e S  8 t A  i t S  8 c A

a
where

1 
i
i i

3 
i~ ‘ky = [ [[[[[fl] Q (t1)} Q(t2)] Q(t3)] Q(t~~~)J Q(tk) ]

and

2 ~l= [ [[[[[ii] Q(s
1)J Q(s2

) ]  Q(s
3)] Q(Sq_i )l 

q 
Q(S

q)l

In this paper a type of equivalence will be defined that includes all of
4

the cases discussed so far and has the added property that a necessary and

sufficient condition for two MRP’s to be equivalent can be written in a simple

form .

3. Definitions and Preliminaries. The following concepts will be used

throughout this paper.

Definition 1.1. Let V be a vector space, and let T : V ~ V be a function on

V . A subspace W of V is said to be invariant with respect to T if for all

w t W , Tw C W.

For example, say V is Rn and T(v) Av where A is an n x n matrix . If

w1,w.,, ,Wk are eigenvectors of A , then the space W spanned by w1,w2, 
• I I

~~
W
k

is invariant under T. 
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Definition 1.2. A ring, R is a collection of objects along with two

operations ~~~, that satisfy the following properties : ~~a,b ,c t R,

(1) a + b c R

(2) a + b b + a

(3) (a + b ) + c = a + ( b + c)

(4) ~ 0 C R that satisfies a + 0 = a

(5) ~ 
— a that satisfies a + (—a) = 0

(6) a b t R

(7) a (b.c) (a~b) c

(8) a (b + c) = (a b) + (a c)

(9) (b + c) . a = (b a) + (c a)

The operation need not be commutative in a ring. For example, the Set

of all n x n matrices is a ring. In this paper we will be interested in various

subsets of the set of all n x n matrices that retain all the ring properties .

Definition 1.3. Let ~a1}, i c I, be a collection of elements of a ring, R.

The ring, A, generated by {a~ } is the smallest subring of R that contains all

of the {a
~~
3.

For example, consider the ring of integers Z. The ring generated by {2 ~

is the ring of even integers. For a less trivial example consider the ring,

• N, of ~~x n  matrices. Let M1,M2, ~~~~~ 
be elements of N. A typical element~

of the ring generated by M,~,M2, 
•. .  

, Mk might be M~M4 + M~M~ — M,~.

Definition 1.4. Let and R2 be two rings and let T : R1 
— R., be a map .

T is called a ring homomorphism (homomorphism) if ,~~a,b c R1,

______________ -.•-~~~—~~~~~~ -~~ -~~~~. ~~~~~~~~~~~~~~~~~~~~~~~ - .- -- ~~~~~~~~~ - .



Q

(1) T(a•b) T(a) . T(b) and

(2) T(a ± b) T(a) + T(b).

Consider the following example of a ring homomorphism. Let y be some

vector in R’1 and let R1 be the set of all n x n matrices that have y as a

left eigenvector. If A ~ R1, define T(A) — a where a is the eigenvalue of A

associated with y. Thus T(A + B) — T(A) + T(B) and T(AB) T(A)T(B)  so T is

a homomorphism from to R.

In this paper we will only consider a special class of MRP ’s defined as

follows .

‘9

Definition 1.5. An in state NB?, {X ,T), 1 < in < “, with kernel Q(t)

will be called simple if

(1) Q~~(t) is nonnegative, nondecreasing and right continuous,Vi,j,

(2) 
~ Q~~~~

(=) = 1, Vi,
j =1

(3) Q
1~(t) = 0, Vt C (—“,0), V i,j,

(4) a! iT c that satisfies

(4a) 
- 
iiQ(”) TI

(4b) i l U = l

(4c) lini Qn ( )  U~

where U — (1,1, •.  .,1) T •
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Conditions (1), (2), and (3) assure that Q ( t ) U  is a column of nonnegative

distribution functions . Condition (4) is equivalent to requiring that the

embedded Markov chain {X} is irreducible, aperiodic and recurrent non—null.

(See [2] for proof of this assertion and other similar results.)

Let {Xk,Tk} be an n state MR.? with kernel Q(t) and say the initial

distribution on the state space is Ti. The following quantities are of interest.

(1) P(T 1 < t :x 0 i)

(2) P(T 1 < t)

(3) P(T1 < t1, T 2 < t 2, • •, T~ < t )

We can write (1) as

(4) P(T 1 < t~X0 
= i) = ~ P(X

1=j, T1 
< t~X0 = i) = (Q(t )U ) 1

i—I.

Thus the column vector Q(t)tJ is a vector of probabilities of a transition

before time t given the initial state. To solve for (2) , we weight each

initial state by the initial probability distribution, so

- 
- (5) P(T1 

< t) = IIQ(t)U.

The i~~ element of the vector !IQ (t) is the probability that starting

with the initial distribution Ti, the process has its first transition before

time t, and the transition is to state i. Likewise the i~~ element of the
rn

vector IIQ( t1)Q( t2) is the probability that starting with the initial

distribution IT, the process has its first transition before time t1, its

second transition in less than t2 time units after the first transition, and

ends up in state i. Inductively , we obtain

(6) P(T
1 

< t1, T2 
<

~~~2, ... , T < t
~
) — flQ(t1)Q(t9) 

... Q(t )U .

1~
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In Chapter II we define equivalence between MR.P’s and investigate its

properties. Sections 1—4 deal with the important special case where the

equivalence is between a NBP and a renewal process (a one state MR.?).

Section 5 deals with equivalence between finite state MRP ’s~

CHAPTER II

1. Equivalence. A recurrent renewal process {S~) is a sequence of independent

and identically distributed nonnegative random variables with Sn 
< with

q 
probability one. The sequence {S~} can be thought of as the times between some

fixed event that occurs repeatedly . Associated with each NB.?, {X~~T~}~ is a

sequence {T~}. Suppose {Xn~
Tn} is a simple MRP on a finite state space

S = {l,2, ”,N} with kernel Q(t). If Y is the initial distribution on S then

• . (1) P(T1 
< t) yQ(t)U where U = (1,1, .,l~ , and

(2) P(T1 
< t1, T2 < t2, ~~~~~~ < tn) 

= yQ(t1) Q(t2
) . . .  Q ( t ~~~)U .

Let II be the steady state vector associated with the embedded Markov chain

{X } , and define r(t) — IIQ (t)U.

Lemma 2.1. r(t) is the cumulative distribution of some nonnegative

random var iable.

Proof. From conditione (1) and (3) of Definition 1.5 , r (t )  — 0  if t < 0

and r(t) is nondecreasing and right continuous. From condition (2) we have

r(”) — II Q( )U — — 1 so r(t) is a distribution function of a nonnegative
random variable. a

--- -.-- -

~

••

~ 

• -  ~~~--~~~~~~~~~~
-
~~~~

--
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For the remainder of this chapter all MBP ’s will be assumed to be simple,

and all the renewal processes will be recurrent.  The following theorem

motivates the definition of equivalence between a l,IRP and a renewal process.

Theorem 2.2 .  If 
~Xn~

Tn~ 
is in steady state then ~T~) is a renewal process

if and only if Vin, Vt1,t2, ~~~~~~~~~~ TIQ(t
1
)Q(t

2
) Q(t~)U 

= r(t1)r(t2
) r(t~,).

Proof. (— ~~~
‘)  if {T~~~ ) is a renewal process then P(T1 < t1, T2 < t2, 

.
,~~ ~~ 

t~)

— P(T1 < t1
) P(T 1 < t2)” P(T1 < ta) .  But this says

iiQ(T
1
) Q(t

2
) • .  .Q(t )U r(t1) r(t,) 

.

4’ (
~~~~

) We must show that {Tn } is a sequence of nonnegative independent and

identically distributed random variables. Since Q( t )  > 0 it is clear that

is nonnegative. Also r ( t) is not a function of n, so it suffices to show that

~T~ } is a sequence of independent random variables . Let i1, i2 , “ i ~ be any

- 
- n positive integers. We must• show that

P(T i < t ~~~, 
Ti2

it i2
i •

~~
I
~~

Tin
it in

) = P(T~~~< t ~~ ) P(T~ < t 1 ) P( Tin~~
t in

)

Since
-

~~~~ P(T1 < t ~~ , T1 < t 1, ... , Ti < t i ) — P(T1~~t1, T2~~t2~I..~TJ ~~~~~~~~ ti )

where

t , if j = iik k
t j  —

= , if j é (i1,12, ~~~~~~ j)

we have P(T1< t 1, ~~~~~~~~~~~~~~~~~~~~~ 
r ( t 1) r ( t 2 ) . . .  r (t j ). But

r(t1) r(t2
) r(tj~) r(ti1) r(ti2

) r(tj~) since r(~ ) I. Thus ~T~) is

a renewal process. a -
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From now on the following notation will be used . The symbol Q will denote

a simple MB? wi th kernel Q(t). The set of matrices {Q (t ) } , t c [0 ,”] ,  along with

an initial probability distribution on the state space, describe the MRP in

cuestion, since from them it is possible to determine all transition probabilities.

Thus, there is no ambiguity in using the symbol Q to denote a MRP. Likewise, the

symbol r denotes the renewal process with distribution r(t) without ambiguity.

Definition 2.1. Let Q be a simple MB? with steady state vector T!, and let

r be a renewal process. Then Q is equivalent to r ~~-r) if

(3) Va, t1, t2 t~ , iTQ(t~ ) Q( t2) Q(t~)U r(t1) r(t2)

By theorem 2.2, Q is equivalent to a renewal process if and only if {T} is

a renewal process in steady state. Thus equivalence and weak lumpability are

the same thing when the lumping is to one state. From the definition it is

clear thatQ-r implies that r(t) = I IQ(t )U , which is the steady state distribution

of the time between state transitions in Q. The reason that the steady state

vector TI is used in the definition comes from the following theorem.

- • Theorem 2.3. Let Q be a simple ni state NB.? (in < “). If there exists a

probability vector, Y , and a renewal process, f, such that

Va, t1,t2,~~ •,t , YQ( t1)Q( t
2
).~~•Q(t)U — f(t 1) f (t 2 ) . . .f ( t ~ ) ,

- - • then f (t )  r ( t ) ,  Vt  (i.e. Y Q( t )U = T I Q ( t ) U, Vt) .

Proof. We split the proof up into two parts.

(case 1: in < “). We know that

= U~’ — [
~

]

and so V~ > 0, I~ such that if a > N, 

-~~~~- - - ~~~~- • -- ~~-- -- - -—•-- - --
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may. Q~~~~
1(=) — . ~ c /n i .  Thus the ~

th column of Qm~~(,C) is

where a. — I < :/ni for each i. Thus
1 3

in In
n—i. ,- ~

.

~~ 
~~~~ 

— = 
~~1~k

a
k~ 

— — 

k~l~
k
~~
k 

— I

I L Yk kk - n I < c/ in 
~ 
1k 

-

k—i k—i

This says that each element of the vector yQ
f h () differs from the

corresponding element of II by less than c/ni. By hypothysis,

-~Q(t1)Q(t2) 
I Q ( t

n
)U — f (t

1
) f (t

2
)~~ • f (t ) ,  so by letting t1 t2 — — tn_i —

we get yQn~~(=) Q(i~)U f(t~). Let yQ~~~
1

(’o ) = II . To show that f(t) — r(t) it

suffices to show that II Q(t~)U — IIQZt )UI is small.

— IIQ(t ) U I  [IT — ~~JQ(t )U < c/rn UTQ(t )D < c/ rn 13T13

Since c was arbitrary we have r(t) — f(t).

(case 2: m— ~~). Fix c and choose N such that 
~ 

< c/7, 
~ 

II~ < c/7.
i—N+l i—N+l

Since Q is simple we have lisi Q~~~~(°°) = Vi, so we can choose N such that ii > N

implies IQ~j(”) 
— ii

~~ 1 < c/7N for i,j < N.

We must show l f (t )  — r(t)J is small,Vt . Since f(t) — yQ~~ (”) Q ( t )TJ  for

any value of a, it suffices to show that for a > N, yQ~(”)Q(t)U — r(t)f is

small,Vt. Since r(t) — IIQ(t)U ,

yQ~~( )Q( t )u  - r(t)I < IyQ~(”) - fl!Q(t)u < ~~ 
yQ

fl (=) - fl
~

i—i 
j

• N

~ 
~Q
n( )  — + ~ .yQfl() — fl

~i—I. j—N+l

We have,

N N ”  N
r 

vQ
m ( )  — I I !~~ I I I ~ IQ~ (°’) — ri .! = I I 1Q~ (“) 

— IT.!
j— i. i—i i—i ~ i i  j— l
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N N N
- a .~ - r — fl — I

— 
. L Q. . (“) — . + .1. 

~ ~~~~~ 
—

i=l 1 
j—l 13 3 i—N+i 

1 
j—l ~

N N N N
I L c/7N + ‘

~~~ ~I Q~~~
(=) + j IT .) I c/7 + 2c/7 — 3c/7.

i]. j—l i—N+l j—l j=l ~

Also ,

N

~ 
IvQ~’(~c) — IT! < I (yQ fl(=))~ + V iT . — 1 — Y (yQfl

(=))•~ +
j—N+l j—N+l ~‘ j —N+l ~ j—l -, j—N+l ~

N N N
1 1 + c/7 — I I ~~~~~ (“) 1 1. + c/7 — I I ~1Q~ (“)j=l i—I. j—l i—l

N N N N
11 + c/7 — I ‘~.(1i . — e/7N) = 1 + c/7 — I 

~i 
I ( — c/7N)

j=l i—i. i=l i—i

1 1 + c/7 - (l—c/7)(l - c/7 - c/7) = 1 + c/7 - 1 + 3c/7 - 2c2/49 I 4c/7.

Thus I f ( t )  - r(t)I I ~ 
IYQ~

i() - n I~ I 3c/7 + 4c/7 - c .  
~i—i

2. Conditions for Equivalence. We are now ready to find the conditions for

Q-r.

Theorem 2.4. Let Q be a MB? with steady state vector fl, and let r be a

renewal process. If Vt , IIQ(t) — r(t)II then Q-r.

Proof. If TIQ(t) — r(t) 1i then Va, t1, ~2, ~ • • ~

]IQ(t1) Q(t2)~~ Q(t )U r(t1) flQ(t2) Q(t~ )TJ

—r(t1) r(t2) 
... r(t )IIU — r(t1) r(t2) 

.. r(t). 

- -•-- .- -•—-- • - - -  -
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Theorem 2.5. If Vt , Q ( t ) L T  Ur(t) then 0-r.

Proof. If Q(t)U = Cr(t) then Va , t1, t.,, “ ,t ,

TIQ(t1) Q(t7) 
... 

Q(t )U = flQ(t
1

) Q(t 2) Q(t )U r(t~)

- 
= ]TUr(t

1
) r(t2)” r(t ) — r(t1

) r(t2) r(t). a

Theorems 2.4 and 2.5 are special cases of the sufficient conditions for

weak lumpability that Serfozo gives in [10]. Theorem 2.4 says that if

the steady state vector, II , is a left eigenvector of Q(t) for every t then Q-r ,

where r(t) is the eigenvalue of Q(t) corresponding to the eigenvector IT. Notice

that in theorem 2.5 it was not important that the starting vector was T . Any

vector that satisfied y U l  would have worked. This is because Q( t)TJ Ur (t)

is a necessary and sufficient condition for strong lumpability of Q to r.

Theorem 2.5 says that if the row sums of the matrix Q(t) are the same for all

t then Q-r where r(t) is the co on value of the row sums of Q(t). If the row

sums of Q(t) are the same, then no matter which state the process is in, the

time until the next transition has the same distribution. Thus, knowing the

state that the process is in gives no extra information about the time until

the next transition. It is clear that in such cases the times between state

transitions is a renewal process. The intuitive justification for theorem 2.4

is less obvious, but most interesting cases of equivalence seem to be of t i t

type. We will see later that Burke’s theorem is a simple corollary of theorem 2.1+.

Let Q be a NB? with a states (1 < a I “), and steady state vector IT. We

define the following subsets of R’1.

I
_ _ _ _ _ _ _ _ _
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Definitions 2.2.

(A) Let S {v c R~: vQ(t)U 
(vu) r(t), Vt) where r(t) — TIQ(t)t’.

(B) Let V be the largest subset of S that is invariant under multiplication

• by Q(t) (i.e. v c V~~~~~~~Vt , vQ(t) c V ) .

(C) Let P — (V ~ R
’1: v > o, vU — 1). P is the set of probability vectors.

(D) Let K = VnP .

Lemma 2.6. S and V are subspaces of ~~~. K is a compact and convex set

if

Proof. Clearly (Ti) c S and (0) c 5, so S has at least two elements. Say

~~ 
c S. Thea y1Q(t)U 

— r(t)(y1U) and y2Q(t)U 
= r(t)(y2U). Thus

(a y1+by 2) Q(t)U r(t)(ay1
+by 2)U so ay 1+by 2 c S. Let W be any invariant

subset of S and let ((1* be the subspace generated by ~/ . Say w c W*.

k 
. k k

-
• w — ajvj where w1 c U) 1-1 ,2, k. But wQ(t) 

~ 
ajviQ(t) — I

i—i i—i i-i

where w~ c U) since 
U) is invariant. Thus wQ(t) c (0*, so (0* is invariant. Since

V is defined to be the largest invariant set, it must be a subspace.

- - 
The set P of probability vectors in is closed convex and bounded. So is

p f l V  since V is a subspace, thus K is compact and convex, 0

Consider the column vector Q(t)U. If v c S then -~~~ 5
.Q(t)U — IIQ(t)U, Vt.

This says that ( — Ti) Q(t)U — 0, Vt , which says that the vector -
~~j~ 

— TI

is orthogonal to the vector Q(t)U, Vt. Thus we have the following important 
•

— le na .

Len~ a 2.7. If Q is an a state MRP and there exists times t1, t2, t

such that {Q(t 1)u , Q(t2)U , Q(t)u) is a linearly independent set then S

is the subspace of R~ 
generated by Ut) , - 

• -~ •-— -- --- 
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Proof. If v c S then ( — ) must be orthogonal to each Q(t)U. But

or.ly the zero vector can be orthogonal to a independent vectors in R
n. Thus

the only elements of S are the points on the line through TI and the origin , a

We now show the importance of the sets V and K.

Theorem 2.8.. Q-r (~~~ IT c V.

Proof. (~~~~‘) If Q-r then Vn t1, t2, ’ .,t , ]IQ(t1) Q(t2) 
... Q (t )U

r(t1) r(t2) r(t
n). Say IIQ(t1

) Q( t2) Q(t~) ~ -S. Then ~ t such that

IT Q(t 1) Q(t2) 
... Q( t ) Q(t)U # (ITQ(t 1) Q(t ) tJ) r(t). But this says that

Q+r. Thus Va, t1, t2 , ... ,t we have IIQ( t
1
) Q( t2) Q(t ) c S. Let

— {w: w — ITQ(t1) Q(t,) 
... Q(t ) for some n,t1, -t~ , 

... ,t). U) must be a

subset of 5, and clearly (V is invariant under multiplication by Q(t). Thus

(~J ~~ V.  But IT c (0 since ItQ(c~) — II, so Ti C V .

( ‘)
~~~~~~~~~ If Ti c V then IT c K. Let v c K. Since each element of Q(t) is

nonnegative, vQ (t) > 0. Also vQ(t) — v’ where v’ c V. Finally, vQ(t)U ~‘r(t)

since v £ K so v’U — r(t). This implies that ~~~~~ ) c K, so K is invariant

under multiplication by Q(t)/r(t). Thus ITQ(t
1
) Q(t2

) Q(t )U - r(t
1
) r(t2)~~~ 

r(t). a

- - _ Corollary 2.8.1. Q-r ‘~~~~ fl £ K.

Proof. If IT c K then Tic V so Q-r. If Q~r then TI c V . But ITU = 1 so

T i c K .  
~

Theorems 2.4 and 2.5 were sufficient conditions for Q-r which are

relatively easy to use in practice. Theorem 2.8 gives a necessary and

I
I 
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sufficient condition but there is not yet any simple way of determining what

1/ is. The following theorem is a necessary condition for Q— r which is also

useful in practice.

Theorem 2.9. If Q is a finite state MB? then Q-r~~~~.r(t) is an

eigenvalue of Q(t), Vt.

Proof. If Q-r then Ii c K , so K is not empty . We have shown that if Q

is finite dimensional then K is compact and convex and invariant under

multiplication by Q(t)/r(t). Thus by the Brower Fixed Point Theorem [9],

Vt , such that c K and Y
~
(Q(t)/r(t)) = This says v~

Q ( t )  — r(t)y
~

4 so r(t) is an eigenvalue of Q(t).

Corollary 2.9.1. Q-r~~~~.- det(Q(t)—r(t)I) — 0 , Vt.

Proof. This is just a restatement of the theorem. ~

Although it is unrealistic to check to see whether r(t) is an eigenvalue

of each Q(t), theorem 2.9 says that one can show that Q~r by merely finding a

value of t where r(t) is not an eigenvalue. The following theorem is useful

- - - in the same way. 
-

Theorem 2.10. If Q is an a state MR.? (n < co) and ~~~~~~~ ~~~ 
tn such

tha t {Q(t1)U , Q(t2)U , . ,Q(t )U} is a linearly independent set then

Q_r .~~~~‘~nQ(t) r(t)n, Vt.

Proof. By lesmia 2.7 , S is a one dimensional subspace, so either V = S

or V — (0). By theorem 2.8, Q..r ~~~~ ]1 £ V so K must consist of the single

vector (IT). Since K is invariant under multiplication by Q(t)/r(t) we have

nQ(t) — r(t)fl. The converse is a restatement of theorem 2.4. a
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Using the results so far, a rough algorithm for determining whether a

NB? is equivalent (or weakly lumpable ) to a renewal process can be formulated .

First of all, if a MR.?, Q, is equivalent to a renewal process, the renewal

process it is equivalent to must be r where r(t) = flQ(t)t, and IT is the steady

state vector of the embedded Narkov chain Q(”) . The first step should be to

try to show that Qir since in general that will be the case. If Q is an n

state MR.? choose t1,t2, ,tn randomly or otherwise and compute 
-

{Q(t1)u, ••. ,Q(t )U}. If {Q(t~~)U , . ‘ ,Q(t )U) is a linearly independent set

(as it will be in general), then Q-r if and only if IT is a left cigenvector

of each Q(t). Choose some t and perform the multiplication IIQ(t). If this

product is not r ( t ) J I  then Q~’r. If IIQ(t) — r(t)fl the chances are it was not a

coincidence. See if TI is indeed a left eigenvector of each Q(t) by writing

out explicitly ]IQ(t) as a function of t. If II is a left eigenvector of each

Q(t) then Q-r.

• If {Q(t1)u, •‘ ~,Q(t )U} was not a linearly independent set, it becomes more

complicated. If dim{Q(t1)U , ,Q(t )U} = 1 check to see if U is a right

aigenvector of each Q(t) by summing the elements of the rows of Q(t). If the

row sums of Q(t) are the same for all t then Q is strongly lumpable to r which

implies equivalence.

Another way of trying to quickly show that Q1r is as follows. Choose t1

and t
2 and perform the multiplication (II — ) Q(t2)U. 

If II c K then~

• so is IIQ(t1)/r(t1). But for any v1 and v2 in K , (vj—v 2)Q(t)U — 0 Vt.

Thus if the result of the multiplication is not zero then Q#r.

If no conclusion has been reached yet then either try different values

of time or attempt to find the subspaces.S and V. Finding S is easy, finding

V is m uch more difficult. The next section gives a more abstract description of

V and K. 

- - - --- --~~~~~~~~~~~- - ---- —-
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3. Equivalence as a Homomorphism. Let Q be an a state MR.? (1 < a < a) with

steady state vector TI , Associated with each t c [0,~~) is a matrix Q(t).

Let Q be the ring of matrices generated by {Q(tfl,t c [0,a). For each

probability vector 
~
y in we have a map F.~: Q-+ R where

(4) F~ (A) -YAU .

A necessary and sufficient condition for equivalence can now be written in a

very simple form.

Theorem 2.11. Q-r ~~~~~~~ is a homomorphism.

Proof. (~~~~~~~) If Q-r then Vn, t~~,t 2 , ~, t~~, ]IQ(t
1

) Q(t
2
) ..~~ Q(t ) u =

(]TQ(t1)U)(TIQ(t2
)U ) ~~~~ (IIQ(t

1~
)U) . Also if A1,A2 c Q then II (A1+A ,)U = ITA

1U + IT A 2r

so F~ is a homomorphism.

(
~~~~~~) If F

~ 
is a homomorphism then Vu, t1, t2, ~~~~ t~ ,

]TQ(t1) Q(t2)~
.. Q(t~ )U = (ItQ(t

1
)U)(flQ(t

2
)U)~ ..(IIQ(t )U) = r(t1)r(t2)~ ~~

r(t )

so Q-r. a

Theorem 2.11 says that the question of whether or not a MB? is equivalent

to a renewal process is identical to the question of whether a certain map

from a matrix ring to the real line is a homomorphism. If there were a good way

of deciding when there are homomorphisms between matrix rings and the real~

the analysis of equivalen& between simple NRP ’s and renewal processes would be

complete. This is certainly a deep question that will demand more research.

The maps {F~} also give an alternate characterization of the sets K and V. 

-~~~~~~-- ---~~~~~~- -~~~
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Theorem 2.12. ‘y c K 
~~~~ 

is a homomorphism.

Proof. (~~~~~~~) If .y c K then TI c K , so Q-r. Thus F,.. is a homomorphism .

But K C S  , and from the definition of S, F~ — F
1
.

(‘~~~~~) Let T — {v. vQ(t)U = (vU) YQ(t ) t’} ,  and let

— {w: w yQ(t1) Q(t2) 
... Q(t ) for some n , t 11 t 2, 

. 
~~~ 

ta).

U) is a subset of T; for if not, there would be some t1,t2, ~~~~ such

that yQ(t1) Q(t2)” Q(tn) ~ 1. But this would imply that for some t,

yQ (t~ Q(t2
)... Q(tn) Q(t)u ,~ (y Q(t

1
) • . .  Q( t  )U)(yQ(t)U) which says that F is

not a homomorphism. The steady state vector must be in the closure of (V

since IT = lim- 1Q
n(), thus Vc > 0., ~v c (V that satisfies l w — f l u  < c.

Also w can be chosen so that w U l  since IQ
n( ) U l , Yn. Thus

I I T Q ( t ) U - Y Q ( t ) U I  - l f l Q( t ) U-~~ (t ) U l  - ~Ti-wlQ(t)U I ln -w l u  < c.

Since C was arbitrary, IIQ(t)U — YQ(t)tT so 11 c T . But if iT c T then 7 S,

s o y c K .  a

If we allow F
1 

to be defined for any vector y in R”, then by a similar

argument it can be shown that V is the set of all vectors, v, that make F a

homomorphism.

4. Examples.

EXAXPLE 1. Disney, Farrell and DeMorais t 3] show that the output of

an MID/ill queue is a renewal process. Tue results obtained thus far allow

for a quick verification of this fact.

The output process from an MID/ill queue is a two state MR.? with kernel

( Q00(t) Q01(t)

Q(t) —

\ Q10(t) Q11(t) ,
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where Q
ij(t) is the probability that

(A) a custcmer departs at time zero leaving i customers in the queue, and

(B) the next departure is before time t, and when that customer leaves

there are j customers left in the queue.

If arrivals are Poisson with rate A , and the service times are deterministic

with rate d, then

0, i f t < d ,

t-d

J Ae~~~e~~~ ds — e~~~ - e~~
t , if t>

0

0, i f t < d ,

Q (t)= t—d
01 J Ae ’

~~~ (l_e ~~
d)ds = (l_e d)(l_ e (t~.d) ), if t > d.

• 0 , i f t < d , 
—

Q10(t) 
=

~~~ if t > d .

0, if t < d ,

Q11(t) —

if t > d .

Thus,

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - -
~~~~~~~~

-
~~~ -~~~-
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(i_ e
_ t

~~~) (l_ e
_

)(l_ e
_ t

~~~)~~

Q(t).’ J l (t)

~~~ i~~e~~~ J (d ,~)

where

0, if t < d ,

1 (t) =

(d ,~) 1, if t > d

The embedded Markov chain is

f —Ad —Ad
~ 

e
- ‘1 Q : ~~- I

—Ad —Adl— e

so the steady state vector, It — (e~~~, 1—e
1
~ ). Performing the multiplication

IIQ(t) , we get

JIQ(t) — ((l_e~~
t) ~~~~~ (l_ e~~

t)(l_e~~
d)) 1 Ct) - (l_e ~~

t) 1 (t)fl.
(d ,°’) (d ,—)

By theorem 2.4 we know that Q..r where r(t) — (i_e ~~
t) 1 (t)

(d ,a)

EXAMPLE 2. Burke’s Theorem [i ] implies that the output from a steady state

M/M/l queue is a Poisson process. The output process is a NB? with kernel Q(t)

where Qij(t) is defined exactly as in the first example, except that in this

case i and j range over all the nonnegative integers. If the service rate is

p , and the arrival rate is A then Q(t) has the form



- --- ~~- -- - 

25

q0(c) q
1(t) q2

(t) q3(t) q4(t) 
.

f0(t) f
1
(t) f2(t) f3(t) f4(t)

/ 0 f0(t) f1(t) f2(t) f3(t) 
.

( 0 0 f0(t) f
1(t) f2(t) 

.

0 0 0 f0(t) f
1(t) 

.

0 0 0 0 f0(t)

where

~t (As)~ —As —L’S A j  j —(A+i)t ~ . si_k
f~(t) — e ~ e ds — — iiA e L k+l.‘ (X+p)~ k—o (j—k)!(A4ii)

q~(t) — ~~Ae
_AS 

f~ (t_s) ds

— A L ’  (l_e~~
t) — A ~~~ e~~t 

~ k+l —k(A+u)~ k0 (A+~.i)

+ ~~ ~ j—k e~~~
f
~~

t 
~
i_k

~
p

k—0 p—0 (j —k—p)! (A+p) p

Because of the special structure of Q(°’) , it can be shown that the steady state

vector , It — (l— p)~~ (l,p,p
2
, p3, ~~~ 

where p — A/u . Performing the multiplication

ITQ(t) we get 

-~~~~~•~~~~~—-~~~~~~~~~~~ -~~-- -~~~..- 
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j
(flQ(t))4 — (l—p )~~ (q4(t) + ~ 

f4—~~~ ~,k+l~
J ~‘ k—0 ~‘

— (l_e~~
t)(l_ p~~)p i — (i_c

_At
) Ji~

This says that the steady state output is a renewal process with distribution

—At(1—s ).

EXAMPLE 3. Now consider the N/N/i/N queue. The output from this queue

is an N+l state MR.? with kernel Q(t) =

g1(t) q2(t) 
. 

~~~~~ 

q~(t)

f
~

(t) f1(t) f2(t) 
. f f~(t)

d n

0 f0(t) f1(t) ~N—2 
~ f (t)

d—N—l

0 0 f0(t) ~N—3 ~ 
f (t)

d—N-2

0 0 0 ‘ ‘ f0(t) ~ f~(t)
i—i

where qj(t) and f~(t) are as in the last example. The steady state vector

•11N = 

1_ ~~N+l (i,p ~
2 
~
3, .,p

1
~~~,k), where k = ~N + e~~

t p~~~

If the steady state output from the M/M/l/N queue is a renewal process

then the renewal process would have to have distribution

—A t N+l — t-’t
rN(t) — UNQ ( t)U = 

~~~
_ e + 

p

l—p i—p

- - --- - -- -  ——--- ---- --~~~~~~~ •- 
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Assume c V. Then Vx, IIN QN
(x) C V . Since V satisfies

f N
Q ( )  Nv ~ V 

~~~~~~~ 
.1.. _ f N) 

~ 
QN

(t)t 1 Vt , we must have ( TI
N

(X) 
— IT ) Q

N(t~~
’ — 0,V -t .

QN (t)U has the form (a,b,b,b , . .~~ ,b) where a and b are positive, thus

N
Q (x) —Ax —Ax

( —;;,;~?;5- — ~N ) Q1~( t ) U — ( — l ) a +  
~~~~~~~~~~~~~ ~ r~~(x) — l) b~~~ ~~

-Ax , N+1
~ 1— Q 1—c 

~~~~~~~~ 
P

) p N)b
1_~N+l rN(x) 1—p

Since rN(x) < i— e~~~, each term in the expression for

21N Q Cx)N 
— flN ) QN(t)U is strictly positive, so 11N 

~ V . Thus by theorem 2.8,rN x

the output of an N/M/l/N queue is not equivalent to any renewal process. (See [3 ] .)

5. Equivalence Between Finite State MRP’s. Let Q be a k state MB? with

steady state vector j~, let Y be an m state MB? (is < k), and let {A1,A2, ~~~~ 
A )

be a partition of the states of Q. Let Ti be an m x k matrix defined by

0, ifj~~~A1,

~
ij— fl~~j

“~ 11a’ if j c Ai,a c A i

and let ~T be a k X m matrix defined by

0, if i ~
U —
- ii

1, if i C A1 .
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Q(t)U is an m X m matrix whose (i,j) element is PIT(Xi 
C A1, T1 

< t~X0 C A
1

) .

Say F is the function that maps the state space of Q to {A 1,A9, ~~~
Am
)
~

Serfozo (101 shows that if {F(X ~ )~ T }  is a MR.?, its kernel is IIQ(t)p.

The definition of equivalence between a MB? and a renewal process has a

natural generalization to equivalence between two finite state MRP’s.

Definition 2.3. Let Q be a NB? with state space ~l,2, . . .,k} and steady
state vector 11. Let Y be an m state MR.? (m < k). Let F:{i,2,”~,k} 

~

be a partition of the states of Q, and define IT and U as above. We say Q is

equivalent to Y via the partition F, (Q Y) if Vn , t1,~ . 
~~~~

IIQ(t1) Q( t 2 ) .. Q(t )U — Y(t1) Y(t2) 
... Y(t~).

Bef ore attempting to produce conditions for this type of equivalence we

should know what this equivalence means. In the case where Y has one state

(a renewal process) we showed that equivalence is the same as weak lumpability.

• If Q is {X~~T~} and Y is {Z~~S ) then definition 2.3 says that for each

1,1 C {l,2, •~ ‘,m}, and yn, t1, • ,t1~,

(1) P~ (X~ C A
1~
T~ ~~~~~~~~~~ t11x0 C A~

) — P(Z~~~j, S~, <t , ... ,~ j <  t11z0— i .

For weak lumpability between Q and Y we would need tha t for each

i,j c {l ,2,.. .,m} and Vn,t1,t2, .~~~, t
1~, i

l~i2 
. i~~1 C {l ,2, ~~~~~~~ in) ,

(2) Pr(x c A1,- X~,_1 Ai ,  
~~~~~ 

C Ai ,  T~ I t ,~ “,T
1 I t1jx0 C A 1)

— P(Z —j, Zn_i =in_i~ ~~~~~~~ Z1 — i~ S I tn, ~~~~~ I t1Iz0ai).

It seems inconceivable that every Q and Y that satisfy (1) would also

satisfy (2) but all attempts to find a counter example have failed so far.

* We can show that weak luinpabiiity implies equivalence , though.
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Theorem 2.13. If Q is weakly lumpable to IT via F then Q IT.

Proof. Let Q be {X ,T } and IT be (Zn~
Sn
)
~

(TiQ(t1)’”Q(t )U).. — P,..(F(X ) =j ,  T It~~,
.* .,T1 

< t1~F(X0) —1 )

k k k
— 

... P (F(X 1~) — j, F(X~~1) — i~_1,
...,F(X1

) — ii,
11=1 i2~~~ i in_l =l

T I t ,“~~,T1 I t1IF (X0)—i)

k k
= 

. ~ P
1~

(T ~~~~ ~~~~~ t1lF (X ) j,”-~,F(X
1) i, F(X0) —i)

i~~~= l i  — l
1 n—i

P (F(X ~~) — j,. ~,p(~~ ) — 

~~ 
F(X~) — i).

Since Q is weakly lt~~pable to IT we know that in steady state, F(X
n
) is

a ~RP with kernel Y(t) so 
-

P1
(T~ Itn*~ 

. •,T1
< tilF(Xn

)=j
~
•
~ 

,F(X0
) = i)

= ~‘~ l
’ 

Yj j (t
2
) 

~n—i ’~~~~ ‘

i ,il 13~,1~

-1- and

P
~
(F(x

~
) 

~~‘ ~%F(x1) i1lF(X0) i) — Y
11

(a) 
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

Thus

k k ~i ,i ( t ) Y ( t )
(TtQ(t1)”~ Q(t )U)11 

— 
(a) ~n1

11 1 i~,_1 — 1 i,i1 ~~~~~~ (a)

- 

~~~~~ 

Y111
(t1
).~

. Y1 j(tn) - (Y (t 1) Y( t 2) 
~~~~ 

Y(t~))
11 

. a
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Since the definition of equivalence between finite state MRP’s is

analogous to the definition of equivalence between a MR.? and a renewal process,

one might assume that the conditions f or equivalence would be similar. First

of all, by theorem 2.13 any sufficient condition for weak lumpability will

also be a sufficient condition for equivalence, thus we have

Theorem 2.14. If Vt , flQ(t) — Y (t ) f l , then 
~

Theorem 2.15. If Vt, Q(t)V — UY(t) , then 
~

Theorems 2.3.4 and 2.15 can be proved the same way theorems 2.4 and 2.5 were

proved. They can also be found in Serfozo [11].

Assume that for each t, Y(t) is an invertable m x m matrix (m < a) ,  and

Q(t) is a k x k matrix (m < k < a). Q(t)  need not be invertable. Let M be

the set of all m x k matrices , M, with M11 > 0 and MU — aI where a is a scalar.

In other words N must have the form

xx..xI
I x . . . X I

N -  o Ix...X

and each row sum must be the same.

If Y(t)~~ flQ(t) g’ M then it must be true that Y(t)
1flQ(t)U ~ I which 

-

says that UQ( t)TJ # Y(t). Thus a simple necessary condition for equivalence

is that Y(t)’411Q(t) c M.

Let S — {M c M: MQ(t) TJ — (M U )Y (t ) , Vt) and let V be the largest subset

of S tha t is invarient under multiplication by Y(t)~~ on the left and Q(t )

on the right (i.e. M t  V~~~~~’~’Vt , Y (t)~~ MQ(t) c V) . Let K — {M 
~ 

V : MU — I).
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These definitions are analagous to the definitions in Section 2 and not too

su:p risingly we have

FTheorem 2.16. Q - IT ~~~~ fl ~ 
K.

4 Proof. (
~~~~~~~) Assume ii ~ K. Then at1, t2 , 

.
,~~ such that

Y(t~)~~ Y(t 1)
’
~ 

.. .Y (t
1
)~~~ IIQ(t

1
)Q(t

2
) 

~~

.. Q(t ) ~ M. But that says ~ t so

that Y(tn)
’•
~~
Y(ti)~~

flQ(ti)~~
’Q(tn)Q(t)U # Y(t~,)~~ ~

-
~~

• Y(t
1)

1
~~Q(t1

)... Q(tn)

But if Q ~

‘ 
IT then Y(t )~~ Y(t1)

1flQ(t1)”~Q(t )TJ 
= I so

‘Q(t ) Q(t)U ~ Y(t1
) . .\(~~~) ‘1(t) which is a contradiction.

(-)
~~~~~~~ if TI c K then Vii , t1, t 2 ,’.•,t Y(t~)~~

. . 
~Y(t1)~~flQ (t1

) . . .Q(t~,)U — I, so
HQ(t1)”•Q(t )t.J — Y(t1

)...Y(t~). a

in general ‘1(t) will not be invertable for all t. This poses a serious

• 
- problem. In the renewal case this problem did not exist since r(t) was a

• scalar, not a matrix. For equivalence we need IIQ(t) — ?(t)IT’ where in some

sense II’ acts just like IT. Unfortunately, if ‘1(t) is singular we cannot solve

for ~~~
‘ uniquely, and we therefore have trouble defining the sets V and K.

Another result that carries over from the renewal case rather easily is that

equivalence is identical to a certain ring homomorphism.

Let Q be the ring generated by {Q(t) },-t c (0 , ) , and let V be the ring

- I: generated by {Y(t )) ,  t c (0,3 . Define V to be fl ,p(~~ — ~~~

Theorem 2.17. Q IT 
~~~~~~~~~~~~~~~~~ 

is a homomorphism.

The proof here is identical to the proof in the renewal case.

One result that has no counterpart in the renewal case is 

-~~~~~~~~~~~ - . ~~~~~~~~~~~~- -~~~~~~~~~~~-
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Theorem 2.18. Let Q, ‘~ and D be k, is and £ state simple MBP ’s (k > n >

p r G°FI f Q - Y a n d Y~~~Dth e n Q - D .

To prove this theorem we need the following lei a.

Leama 2.19. If ~ ‘1 and II is the steady stats  vector for Q then the

steady state vector for ‘1 is y where y~ — fl~ (i.e. y — 11~).
pcF (i)

Proof. Since the steady state vector is unique in the class of simple

MRP’s, it suffices to show that y satisfies y ’1(a) =

Since

0, if j  ~ F 1(i) ,

TI = ___________ —1
-ii - , if j c F (i), —

pcF 1(i) ~

we have

yy(a) a yflQ(a)TJ — ITQ(a)U = flu y. 0

- - 
Proof of Theorem. Let fl be the steady state vector for Q, y the steady

state vector for ‘1 and let U~. and be the matrices induced by the partitions

F and G. We first show that ~ II — IT where II is the £ x k matrix induced
G-F — GOF -Gop

on It by the partition GoF. First of all , if GcF (j ) ~ i then 
~~~~~~~~~~~~~~~~~ 

— 0.

If GOF(j) — 1 then since each column of y~ and fly. has only one nonzero element,

• 

there is some b such that ~~~~~~~~~ 
a 

~~~~~~~~~~~~ 
From the 15~~a,

~ Tt a
acF~~ (b)

— 

~ 

y
p 

— 

~ 

— ____________

peG~~ (i) pcG l(i) qeF~~~(p) qc [G.F]~~~(i)
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-

~ 

_ _ _

Thus ,

) = 
acF 1(b) ‘

~i 
.Lj 

-.-~G-F ij 
II TI[ qc [GoF ] 1(i) q 

acF 1(b) 
a 

qc [GoF]~
l(i) 

q

Thus,

0 , if GoF(j)  ~
=

, if GoF (j)  = j  ,

qt[Gop) 1(i)

so

XG~F 
= 

~G°F 
as desired.

If we let U~ be the k x m summing matrix associated with F, and UG be

the is x ~ summing matrix associated with G, it is easy to show that

~F~G 
— where is the k x £ summing matrix associated with G°F.

Since Q ‘1, Va, t1, t2
... t,~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = Y(t1)” .Y(t).

Also, since ‘1 D, YGY(ti)
*SY(t

fl)PG D(T1)D(t2)-” D(t). Thus

~~~F
tl) t n~~FPG 

— D(t1)~ ”D(t~). But this says

- -~~ ~GoF
Q(tl) •Q(t )JJ — D(t1) ~D(t ),so 

~ 
G~F D. 0

There are several open questions on the topic of equivalence between

finite state MRP’s. Among them are finding an example of two finite state

MRP ’s, Q and Y, that are equivalent but not weakly lumpable ; and finding

conditions for equivalence when the matrices Y(t) are allowed to be singular.

--

~

- -- -~ - . •  - • ~~~~~~~~~~~~~~~~~ -- - •  - -• -  -• _
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If Q ‘1 and ‘1 9 D, then we have shown that QG~FD Nov suppose Q IT and

Q 9 D. Under what conditions is there a partition, H, such that IT D?

In other words, when is there an H that makes the following diagram commute?

6. ~~~ ivalence on a Subset of [0,a). We return now to equivalence between a

MR.? and a renewal process. Say Q is an n state MB? with steady state vector

r is a renewal process and Q - r. Let Q’ be another n state MR.? that has the

property that t < T implies that Q(t) — Q’(t). If t
1 
IT  i l ,2,~~~~~~~ k then

— r(t1)~ ~~r(t ) But since Q(t) = Q ’( t )  f or t < T we also

have f lQ ’(t
l
)
~~~~
”Q’(t

k
)U — r(t1)~ 

..r(tk). Although it is possible that Q’ - r

(in fact It might not even be the steady state vector for Q ’) we do have a sort

of equivalence between Q’ and r on [0 ,T].

The motivation behind this section is that in general a MaP, Q, is not

equivalent to any renewal process and therefore computing probabilities of

successive interdeparture times involves matrix multiplication. If there is

some BC B such that if t1,t2,~ ~,
tk t B then P(T

1 
~~~ 

•
,

~~~~~ 
.~~. 

t
k
) . 

-
• P(T1 

< t1) P(T1 < t 2
)~~.. P(T

1 

< t
k

) ,  computing probabilities would only involve

scalar multiplication (so long as all the times are chosen from B). Also, it

seems interesting to consider the concept of a MR.? acting like different

renewal processes on different subsets of [0,a].
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Definition 2.1k. Let Q be an n state MR.? and let r be a renewal process.

We say Q - r on A if 
~
y such that -y > 0 and Vk, and ~~~~~ 

~~~~ ~ A ,

yQ(tl)~
”Q(tk)U — r(tl

)...r(tk).

Notice that if Q - r op A then Q - r ’ on A for any r ’ that satisfies
r’(t) = r(t),Vt c A. For an arbitrary MB?, Q, one can always construct a

set B~~ R such that Q - r on B for some r (although sometimes B will consist

of only one point). Choose some t c [0,aJ . By the Perron—Frobenius theorem ,

there is a largest positive eigenvalue, a(t) 1 1, of Q(t) and an associated

eigenvector v(t) that satisfies v(t)U = 1. Let B = {s: v(t) Q(s) — a(s) v(t)

Clearly Q - a on B.

Definition 2.5. If {A }, $ ~ .1, is a cover of [0,a] (i.e. LJA  = [0,a]),8 8 8

* 

and for each B c J there is a renewal process r8 such that Q - r 8 on A8
then call {A

8
} a renewal—cover of Q.

• Such a cover exists for any Q since if necessary there can be a different

renewal process for each t c [0,a]. The interesting question is whether or

not one can find a finite or countable renewal—cover. If Q - r then there is

a renewal—cover with one element (i.e. Q - r on [0,a]).

Theorem 2.20. Say Q is a finite state MB? such that Q
11
(t) is a continuous

function of t for each i and j. Let a(t) be the largest positive eigenvalue of

Q(t) and let v(t) be its associated nonnegative, normalized aigenvector. If

the set {v(t)), t c (0 ,a], is finite or countable then so is the smallest

— renewal—cover , and there exists an open interval A~~ [0,o~] such that Q - a on A .

Proof. Let ~v1,v2, ~
.) be a list of the elements of {v(t)) and let

A~ — {s: v~Q(s) a a(s)v~ ). {An
}n i i , l 2 . . .  is the desired renewal—cover. Say

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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t1~ t 2~ A and — t. Since Q(t) is continuous h i s  v~Q(t1) —

and u n  v~Q(t ) — h i s  ~j~(t.)V = a(t)v~. Thus v Q(t) — a(t)v so A isi j..-a i n  ii n n

closed. By the Baire Category Theorem one of the A
n must contain an open

interval, a 

-~~~ - • - -~~~~~~~~~~~~ •- - -~~~~--- - - - --- — • - • • -~~~~~~~~~~~~~~~~ -- •~~- -~~~---



- -

37

BIBLIOGRAPHY

11] P. J. Burke, (1956), “The Output of a Queueing System”, Q~~. Res., 
1~,

699—714.

[2] E. çunlar , (1975) , Introduction to Stochastic Processes, Prentice—Hall
Englevood Cliffs, New Jersey.

[31 R. L. Disney, R. L. Farrell and P. R. de Morals, (1972), “A Characterization
of M/G/i/N Queu~s with Renewal Departure Processes”, ~~~~ Sci., 19,
1222—1228.

[4] J. L. Doob, (1953), Stoc~hastic Prccesses, John Wiley & Sons, New York.

[5] P. D. Finch, (1959), “The Output Process of the Queueing System N/Gil”,
3. R. Statis. Soc., B21, 375—380.

[6] T. Harris, (1955), “The Existence of Stationary Measures for Certain
Markov Processes”, Proceedings of the third Berkeley Symposium on
Mathematical Statistics and Probability, University of California Press.

[7] I. N. Herstein, (1964), Topics in Algebra, Xerox College Publishing.

[8] J. Kemeny and L. Snell, (1960), Finite Markov Chains, Van Nostrand ,
Princeton, New Jersey.

$ [9] H. L. Royden , (1968) , Real Analysis (second ed.), Collier—Macmillan Limited ,
- 

- London.

[10] R. Serfozo, (1969), “Time and Space Transformations of a Semi—Markov Process”,
Doctoral Thesis in Applied Math., Northwestern Univ., Evanston, Illinois.

[11] R. Serfozo, (1971), “Functions of Semi—Markov Processes”, Siam. 3. 
~~~~~~~~~~ 

Math.,

~•9,
[12] T. L. Vlach and R. L. Disney, (1969), “The Departure Process from the

Cl/Gil Queue”, 3. ~~~~~~~~~~~ ~~2~~~’ 
6, 704—707.

I

• • • •

~


